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Transcriptome analysis has important applications in many biological fields. However, assembling a transcriptome
without a known reference remains a challenging task requiring algorithmic improvements. We present two methods for
substantially improving transcriptome de novo assembly. The first method relies on the observation that the use of
a single k-mer length by current de novo assemblers is suboptimal to assemble transcriptomes where the sequence coverage
of transcripts is highly heterogeneous. We present the Multiple-k method in which various k-mer lengths are used for de
novo transcriptome assembly. We demonstrate its good performance by assembling de novo a published next-generation
transcriptome sequence data set of Aedes aegypti, using the existing genome to check the accuracy of our method. The
second method relies on the use of a reference proteome to improve the de novo assembly. We developed the Scaffolding
using Translation Mapping (STM) method that uses mapping against the closest available reference proteome for scaf-
folding contigs that map onto the same protein. In a controlled experiment using simulated data, we show that the STM
method considerably improves the assembly, with few errors. We applied these two methods to assemble the transcriptome
of the non-model catfish Loricaria gr. cataphracta. Using the Multiple-k and STM methods, the assembly increases in conti-
guity and in gene identification, showing that our methods clearly improve quality and can be widely used. The new
methods were used to assemble successfully the transcripts of the core set of genes regulating tooth development in
vertebrates, while classic de novo assembly failed.

[Supplemental material is available online at http:// www.genome.org. The sequence data from this study have been
submitted to the NCBI Sequence Read Archive (http:// www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession no.
SRAOI0I89. Source code for the Multiple-k and STM methods can be downloaded from http://www.surget-groba.ch/

downloads/stm.tar.gz.]

Transcriptomic information is used in a wide range of biological
studies and provides fundamental insights into biological pro-
cesses and applications such as levels of gene expression (Torres
etal. 2008), gene expression profiles after experimental treatments
or infection (Hegedus et al. 2009), discovery of tissue biomarkers
(Disset et al. 2009), cancer gene expression (Morrissy et al. 2009),
gene discovery (Hahn et al. 2009), gene content (Reinhardt et al.
2009), and isolation of conserved ortholog genes for phylogenomic
purposes (Hughes et al. 2006; Dunn et al. 2008), among others.

However, transcriptomic information is generally abundant
only for model organisms on which international research effort
and funding is concentrated, setting aside non-model organisms.
This situation is drastically changing with the emergence and
generalization of next-generation DNA sequencing technologies
that tremendously reduce cost, labor, and time, providing the
opportunity to conduct large-scale genomic projects at lower cost
for non-model organisms.

The most economical next-generation sequencing technolo-
gies are those that generate short sequence reads, typically in
the range of 30-100 bp, and are the method of choice for “re-
sequencing” model organisms (e.g., the Illumina technology)
(Porreca et al. 2007). In this case, the analysis is performed by
mapping the short-reads onto the reference genome or tran-
scriptome. This approach has recently been used for transcriptome
profiling in a method called RNA-seq that is expected to allow
major breakthroughs in transcriptome analysis (Mortazavi et al.
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2008; Nagalakshmi et al. 2008; Wilhelm et al 2008; Wang et al.
2009; Montgomery et al. 2010).

However, de novo assemblies of sequences without a known
reference using short reads have been considered difficult (Schuster
2008), and researchers working on non-model organisms have often
turned to the more expensive longer sequence reads (250-450 bp)
obtained by the 454 Life Sciences (Roche) technology (Margulies
et al. 2005; e.g., Vera et al. 2008; Hale et al. 2009). However, the
applicability of short-reads methods as an appropriate choice for
de novo transcriptome assembly has recently received attention. By
reassembling the transcriptome of a species with a known genome
using a de novo assembler, Gibbons et al. (2009) have shown that
short-reads can be of considerable utility for assembling tran-
scriptomes of non-model organisms.

Despite the fast development of assemblers able to efficiently
handle more and more reads (Zerbino and Birney 2008; Simpson
et al. 2009), transcriptome assembly is still difficult. For instance,
elongation of contigs is not only impeded by repeats or allelic
variations but also by alternatively spliced transcripts. Moreover,
while genomic sequencing coverage is generally uniform across
the genome, transcriptome coverage is highly variable, depend-
ing on gene expression level, excluding the use of coverage in-
formation to resolve repeated motifs (Zerbino and Birney 2008).
Therefore, the quality of a de novo transcriptome assembly is
highly dependent on the user-defined sequence overlap length
between two reads required to consider them as contiguous (re-
ferred as k-mer length). The best k-mer value for a given assem-
bly depends on the sequencing depth, the read error rate, and
the complexity of the genome/transcriptome to be assembled
(Simpson et al. 2009). For transcriptome assembly, in which cov-
erage is not uniform, using higher k-mer length will theoretically
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result in a more contiguous assembly of highly expressed tran-
scripts. On the contrary, poorly expressed transcripts will be better
assembled if lower k-mer lengths are used (Zerbino and Birney
2008). These theoretical expectations have been experimentally
supported in a controlled de novo transcriptome assembly of
a model organism (Gibbons et al. 2009). The choice of the k-mer
length is then a subjective decision of whether to emphasize on
transcript diversity by using a short k-mer length (that will lead to
the assembly of numerous and highly fragmented transcript frag-
ments), or to emphasize on contiguity by using a longer k-mer
length (that will allow the recovery of longer transcript fragments
but at the cost of a lower transcript diversity). Hence, in most cases,
an intermediate k-mer length is chosen to reach a compromise be-
tween these two extremes. Therefore, an approach for de novo
transcriptome assembly that takes advantage of the assembly per-
formances of various k-mer lengths is highly desirable.

The analysis of genomes or transcriptomes of non-model or-
ganisms can be enhanced by performing comparisons with the
genome of closely related model organisms. For instance, algo-
rithms have been proposed for boosting the assembly of bacterial
genomes using available genomes of related species (Salzberg et al.
2008). In eukaryotes, the transcriptome of a non-model plant
(Pachycladon enysii)—which has recently diverged from the refer-
ence Arabidopsis thaliana (7-10 million yr ago, Mya)—was ana-
lyzed using a combination of classic read mapping against the
reference transcriptome, de novo assembly, and contig mapping
against the reference genome using BLAST (Collins et al. 2008).
Likewise, the brain EST data set of the social wasp Polistes metricus,
which was generated by next-generation 454 sequencing, was
successfully analyzed by comparing it to the complete genome of
the honey bee, from which it diverged 100 to 150 Mya (Toth et al.
2007). An unexplored extension of these comparisons is the use of
a closely related model organism to serve as template for improv-
ing the assembly of the transcriptome of a non-model organism.
However, at the nucleotide level this approach is limited to those
non-model organisms that possess a very close relative with a
complete genome. This limitation is due to the increasing amount
of nucleotide differences between ortholog genes with increasing
evolutionary distance, which will rapidly lead to the absence of
good-quality matches between the two species. However, differ-
ences in amino acid sequence accumulate more slowly than nu-
cleotide differences with increasing evolutionary distance, so com-
paring sequence translations against a reference proteome might

be a promising approach to improve the assembly of the coding
fraction of the transcriptome of non-model organisms, even if the
reference model is distantly related.

Here we present two methods for improving de novo tran-
scriptome assembly, which answer the expectations presented
above. The principle of the first method is to perform multiple
assemblies with various k-mer lengths and to retain the best part
of each one to form the final assembly. In the second method,
we assemble the coding contigs into scaffolds by mapping their
translation on a distant reference proteome. The pipeline imple-
menting this method can be applied to the results of any de novo
transcriptome assembly as long as a reference genome or tran-
scriptome of an evolutionarily linked species is available. We then
validated the efficiency and the accuracy of our two methods by
using simulated and real data from species with a known genome.
To demonstrate the efficiency of both methods on real data from
non-model organisms, we applied them in assembling reads from
a next-generation short-read sequencing experiment that we per-
formed on the transcriptome of the Neotropical catfish Loricaria
gr. cataphracta. We demonstrate the practical efficiency of these
methods by their success in recovering the full set of transcripts
belonging to the gene network regulating dental development,
while classic methods failed.

Results

De novo transcriptome assembly with multiple k-mer values

The basic assumption of this new method is that different k-mers
will allow the assembly of transcripts with different abundances.
To verify this assumption, we first assembled the recently pub-
lished next-generation transcriptome sequence data set of the
yellow fever mosquito, Aedes aegypti (Gibbons et al. 2009), with
different k-mer values (Table 1). We then estimated the abundance
of the transcripts assembled with the different k-mer values based
on their read coverage (digital gene expression). This analysis was
also conducted on a simulated 35-bp RNA-seq data set based on the
set of zebrafish cDNA from Ensembl (Supplemental Table S1). As
expected, the average coverage of assembled contigs increases with
increasing k-mer values on both the real (Table 2) and the simu-
lated (Supplemental Table S2) data sets. However, it is worth noting
that the standard deviation of transcript abundances also increases
with higher k-mer values. Hence, low k-mer values allow the

Table 1. Summary statistics of the assemblies used to assess the performances of the Multiple-k de novo assembly method based on the Aedes

aegypti RNA-seq data set (Gibbons et al. 2009)

Total length No. of Reference coverage
Method k-mer Contigs > 100 N50 Max length (Mb) transcripts (%) in megabases (%)
Single k 19 36,933 173 1370 6.348 7402 (39.5) 4.301 (15.4)
21 31,263 180 2017 5.583 6738 (36.0) 3.839 (13.5)
23 24,923 181 2392 4.496 5852 (31.2) 3.126 (11.0)
25 18,948 178 2354 3.382 4801 (25.6) 2.389 (8.4)
27 13,105 175 2920 2.324 3561 (19.0) 1.663 (5.9)
29 8264 173 1784 1.453 2431 (13.0) 1.057 (3.7)
Subtractive Multiple-k: A 27 +19 38,888 146 2920 5.929 7341 (39.1) 3.803 (13.4)
Subtractive Multiple-k: B 27 +21 +19 33,704 141 2920 5.062 6705 (35.7) 3.290 (11.6)
Additive Multiple-k 19 to 29 63,034 193 2920 11.908 7784 (41.5) 8.009 (28.2)

These statistics correspond to the set of contigs >100 bp. (k-mer) Required length of identical overlap match between two reads by Velvet (Zerbino and
Birney 2008); (N50) contig length-weighted median; (Max length) length of the longest contig; (Total length) summed length of all contigs >100 bp;
(No. of transcripts) number of different reference transcripts retrieved (and proportion of the total number of transcripts in the reference transcriptome);
(Reference coverage) number of bases of the reference transcriptome covered by the assembly (proportion of the total length).
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Table 2. Coverage of the contigs assembled from the Aedes
aegypti data set with different k-mer lengths

Coverage (rpkm)

k Mean SD Mean 10% LC Mean 10% MC
19 55.26 122.57 3.39 202.33
21 74.34 333.56 2.78 367.43
23 101.08 609.28 2.01 612.78
25 176.03 3583.98 1.61 1339.09
27 231.24 1851.23 1.34 1849.99
29 378.29 3310.73 1.07 3242.97

(SD) Standard deviation; (LC) least covered contigs; (MC) most covered
contigs. Coverage is expressed in reads per kilobases per million (rpkm).

assembly of numerous transcripts with relatively low abundance,
while larger values allow the assembly of a lower number of tran-
scripts but with a much larger range of abundances. Given the
different characteristics of the transcripts assembled with different
k-mer lengths, combining the results obtained with various k-mer
lengths into a final assembly seems to be a promising way of im-
proving de novo assembly of sequences with very variable cover-
age levels as is the case for nonstandardized transcriptomes.

To take advantage of the assembling properties of different k-
mer lengths, we have designed two alternative methods of de novo
assembly that use multiple k-values. In the first place, we designed
the “subtractive Multiple-k” method that starts the assembly with
a high k-mer length and then uses the nonassembled reads of
this assembly to perform another assembly with a smaller k-mer
value. This procedure can be reiterated. The second method, which
we called the “additive Multiple-k” method, pools the contigs ob-
tained with different k-mer lengths and subsequently removes re-
dundant contigs (see Methods). We investigated the performances
of the two alternative methods using the transcriptome of Ae.
aegypti (Gibbons et al. 2009), for which the complete genome is
known (Nene et al. 2007). Hence, it is possible to evaluate the
number of transcripts recovered by the different assembly meth-
ods, as well as the proportion of the reference transcriptome covered
by the assembled contigs. We also compared the results obtained
with these new approaches to the optimum assembly obtained with
a single-k. We first carried out Velvet assemblies using k-mer lengths
from 19 to 29 and selected the assembly obtained with k = 21 since
it gives a good compromise between the number of contigs and
their length (as was already determined by Gibbons et al. 2009).

We tested two assembly variants (A and B) of the subtractive
Multiple-k method: assembly A with two k-values (k = 27 followed
by k =19, which are the two most extreme k-values still displaying
interesting statistics; see Table 1), and assembly B with three
k-values (k=27, then k=21, and finally k = 19). As can be seen from
Table 1, the subtractive Multiple-k method does not provide a clear
improvement to the Velvet de novo assembly (the assembly shows
the lowest N50 and a lower number of transcripts recovered than
the single-k method) and will not be discussed further.

The additive Multiple-k method was performed with all the
k-values between 19 and 29. The final assembly statistics indicate
that this approach outperforms all others (Table 1). The number
of contigs >100 bp and total length are both doubled as compared
to the single-k Velvet assembly. Interestingly, this marked increase
is accompanied by a higher N50 (median length-weighted contig
length) (Zerbino and Birney 2008), indicating a substantial im-
provement in contiguity. Furthermore, the reference transcripts
recovered are more numerous, reaching almost 40% of the refer-

ence transcriptome, and base coverage of reference transcripts
is doubled as compared to the single-k Velvet assembly.

It can be noted that the number of transcripts identified with
the Multiple-k method is similar to the number of transcripts
identified with k = 19, but that the number of contigs is much
higher in the former. This is due to the fact that the Multiple-k
method pools contigs assembled with various k-mer lengths and
covering different parts of each transcript. Hence, for a given
transcript, more sequence information is available in the Multiple-
k assembly. This situation may be explained by splice variants with
different abundances resulting in a heterogeneous number of
exons, which are therefore assembled with different k-mer lengths.
Variation in the coverage within a transcript may also be due to
regions more difficult to reverse-transcribe, amplify, or sequence
(like repeated motifs or strong secondary structures), to genes with
alternative transcription start or stop sites or to stochasticity.

When comparing the set of transcripts identified with the
single-k Velvet assembly and the additive Multiple-k method, we
identified 6697 transcripts in common between the two methods,
while 1090 new transcripts were found only with the latter. Fur-
thermore, the contigs belonging to this common set (30,749
contigs) were longer when they were assembled with the Multiple-
k method (N50 = 218 vs. 180; maximum length = 2920 vs. 2017;
total length = 6.3 vs. 5.5 Mb for the additive Multiple-k method
and single-k Velvet assembly, respectively). Hence, the additive
Multiple-k method does not only improve the transcript diversity
of the assembly but also increases contiguity.

Scaffolding using translation mapping (STM)

De novo transcriptome assemblies may be substantially improved
by the addition of a scaffolding step where the contigs belonging
to a single transcript are ordered, orientated, and assembled. This
scaffolding step is generally performed using paired-ends libraries,
but the generation of such libraries doubles the cost of a sequenc-
ing experiment. An innovative way of scaffolding without incor-
porating additional sequence is to use the proteome of a related
species as a reference to assemble contigs belonging to a same
coding sequence. We have designed a method called “Scaffolding
using Translation Mapping” (STM) that exploits the fact that, by
translating contigs into amino acid sequences, it is possible to
search for orthologous regions in a reference proteome, even when
it belongs to a distantly related organism. In this way, all translated
contigs matching a same reference protein can be assembled into
a scaffold, provided that they pass some accuracy checks (a di-
agrammatic representation of the pipeline is presented in Fig. 1).
In case reads are long enough (typically longer than 70 bp), we
developed two flavors for this method: with or without the incor-
poration of the orphan reads not included in the initial assembly,
named STM* and STM ™, respectively.

In order to assess the accuracy of our method, we have tested
it using a simulated de novo transcriptome assembly of the
zebrafish (Danio rerio), a model organism with a highly studied and
richly annotated genome (for simulation details, see Methods).
In this way, we could estimate the number of misassemblies by
comparing the scaffolds obtained to the original transcriptome
using BLASTN (Altschul et al. 1997). We considered as mis-
assemblies all scaffolds that did not match perfectly an existing
transcript of the original transcriptome. To identify the error rate
that can be attributed solely to the STM method, we first deter-
mined the amount of misassembled contigs due to the Velvet
de novo assembler via BLASTN against the initial transcriptome,
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Figure 1. Diagrammatic representation of the STM method. This pipe-
line can either use only contigs (STM™ method) or, if reads are long enough,
contigs plus unassembled reads (STM* method). These contigs/reads are
mapped on the reference proteome using BLASTX. When a contig has no
significant hit or is the only one to map on a given reference protein, it
cannot be further assembled and is directed into the final assembly. When
there are several hits on a same reference protein (Box 1: an example with
5 hits) their relative positions are recorded on the reference scale. If there is
an overlap in the positioning of several hits (here hits 2, 3, and 4 form an
overlap group), their consensus sequence is computed, and when the
number of ambiguities is below a user-defined threshold, the consensus is
accepted and a scaffold is constructed (Box 2: dashed line represents N’s
added to join the contigs). Else, the consensus is rejected and the contigs of
the overlap group are assembled using CAP. If the result of this assembly
step is a single “super-contig,” it is accepted and a scaffold is constructed
(Box 3). If more than one super-contig is obtained (Box 4), the overlap
group assembly is rejected and the contigs are placed as independent
transcripts in the final assembly. If present, the other nonoverlapping
hits (or nonambiguous overlap groups) are joined into a scaffold, which is
incorporated into the final assembly.

which resulted in 668 erroneous contigs (0.56% of the total) (Table
3). We then performed the STM method on the zebrafish de novo
assembly using the proteome of the stickleback (Gasterosteus acu-
leatus) as a reference. The results of the STM method show a clear

improvement of the transcriptome assembly, either with STM*
or STM™ (Table 3). The number of contigs >100 bp was decreased
by ~10% coupled to a marked increase in N50 of 31% and 42%
for STM ™~ and STM*, respectively. The STM method also leads to
amuch longer maximum scaffold length and a greater total length,
especially for STM*, which globally shows better assembly statistics
than STM™ (Table 3). Nevertheless, the assembly error rate specific
to STM™ is 1.16% (1.70% when including the error rate of the de
novo assembly), while it is 2.42% for the STM* (2.91% when in-
cluding the de novo assembly error rate). This test indicates that
STM"* performs the best yet with a slightly higher error rate than
STM™, which also enhances substantially the assembly with minor
error risk.

We then investigated whether the efficiency of this scaffold-
ing method varied depending on the characteristics of the tran-
scripts being assembled. First, we classified the contigs that were
most efficiently scaffolded with our new method (a set of 38 tran-
scripts showing a 20-fold increase or more of their length after
scaffolding) according to their Gene Ontology, showing no par-
ticular bias in GO categories (Supplemental Table S3). Then, to
check whether the assembly efficiency depended on the known
transcript length or on its abundance, we measured the correlation
between the contigs’ length increase after scaffolding and the real
transcript length (as given in the reference transcriptome), and its
read coverage. Both these correlations were quite low (Spearman
rank correlation coefficient of 0.1218 and —0.1336, respectively),
suggesting a lack of strong effect of transcript length or abundance
on the STM method’s efficiency.

Optimized de novo transcriptome assembly
of the catfish Loricaria

Having demonstrated in controlled conditions the accuracy and
high performance of the two new methods for de novo tran-
scriptome assembly, we then used them to assemble the tran-
scriptome of a non-model organism: the Neotropical catfish L. gr.
cataphracta. The genus Loricaria belongs to the catfish family
Loricariidae, the most species-rich family of freshwater fishes in
the Neotropics. All loricariids share the presence of extra-oral and
post-cranial denticles. These denticles develop in the same way
as do teeth, and similar morphogenetic mechanisms underlying
their formation may be inferred (Sire 2001).

Deciphering the genetic control of the development of lori-
cariids’ ectopic teeth may contribute to the understanding of
teeth formation and regeneration in vertebrates and will certainly
shed light on the evolutionary implication resulting from bearing
such denticles, especially on the great species diversification of lori-
cariids. To this aim, we sequenced and assembled the transcriptome
of L. gr. cataphracta embryos to reconstruct the sequences of the
transcripts known to control tooth development. Recently, the genes
forming the core dental regulatory network have been identified and
represent a conserved set of 14 genes that provides the molecular
machinery and developmental constraints for all teeth, either jaw
or pharyngeal teeth (Fraser et al. 2009). Out of these 14 genes, five
are duplicated in teleosts, resulting in a set of 19 genes.

The transcriptome of full embryos of L. gr. cataphracta—from
stages ranging from end of gastrula until hatching—was sequenced
with 71-bp single-end reads on the Illumina Genome Analyzer
II platform. One sequencing lane was used and resulted in 9.56
million reads. Reads were first assembled using Velvet and a range
of single k-mer lengths. For this step we kept the assembly obtained
with k = 41 as it gave a good compromise between the number of
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Table 3. Assembly statistics and misassembly rate for the Velvet de novo assembly and STM
method applied to the Danio rerio simulated data set

No. of Max Total No. of Percent of
Assembly contigs N50 length length (Mb) errors (%) STM errors
Velvet k = 41 118,451 361 6798 37.32 668 (0.56) —
STM™ 104,613 474 72,388 40.49 1779 (1.70) 1.16
STM* 108,910 514 76,065 44.19 3169 (2.91) 2.42

Gasterosteus aculeatus (stickleback) proteome was used as reference for the STM method.

(No. of contigs) Number of contigs/scaffolds >100 bp; (Max length) length of the longest contig/
scaffold; (Total length) summed length of all contigs/scaffolds; (No. of errors) number of misassemblies
(and percent of misassemblies relative to the total number of contigs); (Percent of STM errors) percent of
errors associated with the STM method excluding errors due to the de novo assembler.

substantially increased (Table 5). Finally,
the use of the Multiple-k together with
the STM* methods resulted in the assem-
bly of transcript fragments of the full set
of 19 genes, and with a marked increase
in sequence length for those transcripts
recovered earlier (Table 5).

Discussion

Improving de novo transcriptome
assembly

contigs obtained, the N50, and the number of unigenes recovered
(Supplemental Table S4). Next, the additive Multiple-k method was
performed, pooling the assemblies obtained with values of k = 37,
41, 45, 49, 53, 57, and 61. Summary statistics (Table 4) show that
the additive Multiple-k assembly makes use of 38.7% more reads
than the single-k Velvet assembly. It also displays twice as many
contigs >100 bp and a higher N50, indicative of an increased con-
tiguity. All other assembly statistics are also markedly improved. In
particular, the additive Multiple-k method allowed the identifica-
tion of about 2000 additional genes, representing an increase of
>20% as compared to the single-k Velvet assembly (Table 4).

We implemented the two flavors of the STM method to the
additive Multiple-k de novo assembly. STM™ was performed with
a minimum contig length threshold of 73 bp. Its resulting sum-
mary statistics indicated a reduction in the number of contigs/
scaffolds >100 bp due to the assembly of some of them into scaf-
folds. Out of the 166,490 contigs >73 bp, 23,675 (14.2%) were
successfully incorporated into 6613 scaffolds. As expected, a sub-
stantial increase is observed for N50 (+27.4%), and particularly for
the maximum contig/scaffold length, which reaches >82 kb (Table
4). However, the number of different transcripts has slightly de-
creased (—0.88%). This decrease is probably due to the few in-
stances where two or more contigs belonging to different tran-
scripts were erroneously joined into a single scaffold.

The STM* method integrated 4.6% more reads and further
improved the assembly as indicated by the summary statistics
(Table 4). Notably, this led to a marked increase in the number of
unigenes identified (+72.3% compared to the single-k Velvet de
novo assembly, +42% compared to the Multiple-k method). Using
the STM* method, we recovered 246 transcripts longer than the
longest transcript obtained without it. The longest transcript
identified was a transcript coding for the titin b (ttnb), and the size
distribution of these 246 long transcripts is presented in Supple-
mental Figure S1.

We then examined whether our new
methods allowed a better assembly of the

The emergence of next-generation se-

quencing technologies has impressively
enlarged the realm of transcriptomic analyses. For instance, these
new technologies have been efficiently employed in the discovery
of new genes (Hahn et al. 2009), the development of new tissue-
specific or cancer biomarkers (Levin et al. 2009; Morrissy et al.
2009), the isolation of fast-evolving genes (Montoya-Burgos et al.
2010), the detection of new alternative splice variants (Carninci
2008; Gibbons et al. 2009; Tang et al. 2009), allele-specific gene
expression (Main et al. 2009), SNP discovery in genes (Barbazuk
et al. 2007), or epigenetic gene regulation (Elling and Deng 2009).
These advances and future ones rely, however, on the size and
quality of the transcriptome assembly.

In this study, we present methods to improve both the
quantity and the quality of the information that can be extracted
from a de novo transcriptome assembly. By taking advantage of
the assembling properties of many different k-mer lengths, the
Multiple-k method is able to incorporate the best parts (i.e., the
more contiguous) of each assembly into the final assembly. We
have demonstrated that this strategy leads to a considerable in-
crease in both contig contiguity (by keeping long contigs of highly
expressed genes assembled with high k-values) and in transcript
diversity (by keeping contigs of poorly expressed genes that only
assemble with low k-values). Furthermore, the use of this method
avoids the subjective selection of a single k-mer length.

The second methodology we developed, the STM method,
uses the information of a reference proteome to accurately join
contigs into scaffolds. Simulated data demonstrated that this
method efficiently joins multiple transcript fragments that are part
of a single gene, providing new and valuable information on the
order and the orientation of these fragments along the original
transcript.

Importantly, the sequential application of these two methods
to the new next-generation short-read data set of the catfish L. gr.
cataphracta demonstrates their utility in improving the de novo as-
sembly of a non-model organism transcriptome. First, the additive

19 genes representing the core set of den-
tal development regulatory genes. Using
classic de novo transcriptome assembly
methods (Velvet with k = 41), we were able
to retrieve transcript fragments of seven
out of the 19 genes. By implementing the
Multiple-k method, we identified an ad-
ditional transcript belonging to the set
of tooth development genes, and the se-
quence length of the seven transcript frag-
ments already recovered was in most cases

Table 4. Statistics of de novo assembly of Loricaria gr. cataphracta transcriptome

No. of reads x 10° Total length  No. of
Assembly (% of total) No. of contigs N50 Max length (Mb) unigenes
Velvet k = 41 4.24 (44.34) 72,463 215 4802 15.62 9110
Multiple-k 5.88 (61.46) 149,233 234 5330 33.33 11,050
STM™ 5.88 (61.46) 133,983 298 82,616 35.59 10,952
STM* 6.15 (64.37) 182,224 315 85,994 49.61 15,693

(No. of reads) Number of reads used for the assembly; (No. of contigs) number of contigs/scaffolds >100
bp; (Max length) length of the longest contig/scaffold; (Total length) summed length of all contigs/
scaffolds; (No. of unigenes) number of unique genes identified during annotation.
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Table 5. Assembly of the core set of dental development regulatory genes in Loricaria

gr. cataphracta

goal of a de novo transcriptome assembly
experiment is gene identification, the in-

CDS length recovered

Total CDS Mean coverage

clusion of reads (>70 bp) with the STM*
method is highly recommended.

Gene code Ensembl ID Velvet k=41 Mk STM* length (rpkm) The recovery of more diverse tran-
scripts with higher contiguity is also dem-

ctnnb1 ENSDARG00000014571 2337 2340 2340 2340 12.76 onstrated by the successful recovery of all

ctnnb2 ENSDARG00000023472 1137 2022 2022 2334 10.07

bmp2a ENSDARG00000013409 0 0 228 1158 0.99 the core set of dental d%‘felotpmenft tr}elgu 13

bmp2b ENSDARG00000041430 0 0 273 1233 1.25 Ory genes using a combination ot the ad-

bmp4 ENSDARG00000019995 141 444 846 1200 4.51 ditive Multiple-k and STM* methods,

dix2a ENSDARG00000079964 198 222 417 813 3.86 while less than half of them were recovered

dix2b ENSDARG00000017174 0 0 363 828 1.72 using single-k Velvet de novo assembly.

eda ENSDARG00000074591 0 84 84 1077 275 Furthermore, this analysis demonstrates

edar ENSDARG00000053363 135 255 663 1377 4.46 10T, T ¥y

fgf3 ENSDARG00000077894 0 0 120 768 1.70 once again the interest of our methods to

fgf10a ENSDARG00000030932 0 0 237 603 1.75 assemble transcripts with low abundance

notch2 ENSDARG00000043130 621 1896 3552 7413 3.59 since the single-k method only assembled

itx2 ENSDARG00000036194 249 348 348 807 7.7 . ) :

rinx2a ENSDARG00000040261 0 0 309 1401 212 the transcripts with the highest sequence

runx2b ENSDARG00000059233 0 0 126 1365 1.61 coverage (Table 5).

shha ENSDARG00000068567 0 0 303 1254 1.4

shhb ENSDARG00000038867 0 0 171 1248 1.03

fgf8a ENSDARG00000003399 0 0 549 630 2.28 Application requirements

pax9 ENSDARG00000053829 0 0 189 1029 2.16

The Multiple-k method can be imple-

For each of these 19 genes, the length of the CDS recovered by the three assembly methods is in-
dicated, as well as the total length of the CDS in D. rerio. (Mk) Multiple-k method. The mean coverage

of each gene is indicated in reads per kilobases per million (rpkm).

Multiple-k method makes use of more sequence information from
the original data set than a single-k Velvet de novo assembly; the
number of reads used is increased by 38.7%. This, together with an
8.8% increase in contiguity, leads to the identification of ~21%
more unigenes. A further increase in contiguity is observed when
using the STM ™ method. The STM* method, which includes orphan
reads into the procedure (4.6% more reads used), leads to a remark-
able increase in the number of unigenes identified in the Loricaria
transcriptome (+72%, as compared to the single-k Velvet de novo
assembly), which corresponds to >56% of the zebrafish gene set Zv8
(Ensembl GeneBuild). In the single-k Velvet de novo assembly, only
33% of these were recovered.

The number of unigenes identified using the different as-
sembly methods is illustrated in a Venn diagram (Supplemental
Fig. S2) and shows that 8986 unigenes were identified by all the
methods tested here. However, an analysis of the contigs assigned
to this set of shared unigenes (Supplemental Table S5) indicates
that the new methods allow a more contiguous assembly of these
contigs. Hence, these methods not only allow the identification
of a higher number of unigenes, but also allow a better assembly
of the transcripts belonging to the unigenes already identified
using a single-k Velvet assembly.

The increase in the number of unigenes identified is probably
not artifactual since the error rate of the STM method can likely not
be higher in this experiment than the one determined in the as-
sembly of the simulated zebrafish transcriptome data set using the
proteome of the stickleback as reference; these two model fish
species diverged ~300 Mya, while Loricaria and the zebrafish have
diverged more recently, ~150 Mya (Steinke et al. 2006). Moreover,
the expected small amount of misassemblies (scaffolding two or
more contigs belonging to different transcripts) will only lead to an
underestimate of the number of unigenes. Indeed, when using the
best BLASTX hit to annotate a “chimeric” scaffold, a single gene
identification will be obtained, while two or more would have been
obtained with the unassembled contigs. Hence, when the primary

mented in conjunction with any assembler
that uses the k-mer length parameter, such
as those based on de Bruijn graphs rep-
resentation of sequence neighborhoods,
as initially implemented in this field by
Pevzner and coworkers (Pevzner and Tang 2001; Pevzner et al.
2001). Current assemblers using this graph-based approach in-
clude ALLPATHS (Butler et al. 2008) and ALLPATHS 2 (MacCallum
et al. 2009), Edena (Hernandez et al. 2008), Velvet (Zerbino and
Birney 2008), EULER-SR (Chaisson and Pevzner 2008), and ABySS
(Simpson et al. 2009).

As to the STM method, it works using the output data set of
the assembly and is therefore independent of the assembler used.
This makes it of general use for de novo transcriptome assembly.

STM method limitations

The STM method relies on the assumption that the gene set of
the reference proteome, which will serve as a template for joining
contigs into scaffolds, is sufficiently similar in terms of gene com-
position, ortholog gene length, or multigene families, to the gene
set of the transcriptome under assembly. Large differences may re-
duce the number of scaffolds or lead to an increase of misassem-
blies. The errors introduced by this method arise mainly when two
contigs from different transcripts map on a single reference tran-
script. This can happen when recent paralogs or pseudogenes are
present or when the reference proteome is not complete enough,
particularly for multigene families for which not all members are
present in the reference proteome. The error rate can be reduced by
increasing the similarity cutoff in the STM procedure at the cost
of a lower scaffolding efficiency. Hence, the choice of a similarity
cutoff is a trade-off between accuracy and efficiency.

In this respect, a parallel can be drawn between the STM
method and gene orthology prediction, for which substantial lit-
erature exists. EST databases are being used for predicting gene
orthology among species, particularly for phylogenomic purposes
(e.g., Burki et al. 2008; Dunn et al. 2008). However, it has been
recently shown that ortholog prediction accuracy is significantly
higher when at least one of the two transcriptomes compared is
complete, and that comparing two partial transcriptomes results
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in many more false-positive predictions and in more unpredicted
true orthologs (Gibbons et al. 2009). Interestingly, this same study
showed that although the amount of predicted orthologs decreases
with increasing evolutionary distance, the prediction accuracy
remains the same. This observation is promising as it may well
hold true in the context of the STM method for improving the
assembly of coding parts of a non-model transcriptome, as sug-
gested by the low error rate associated with this method, even
when using the proteome of the stickleback to reconstruct the
zebrafish transcriptome, two species that diverged 290-330 Mya
(Steinke et al. 2006; Yamanoue et al. 2006).

In the future, the STM method will not only benefit from the
promise of longer and more numerous reads resulting from next-
generation sequencing technologies, but also from both the im-
provement of current model species transcriptomes/proteomes
and the fast rate of development of new model organisms and their
transcriptomes/proteomes.

Methods

Multiple-k method

As no optimal k-mer length exists for any de novo transcriptome
assembly, we designed and investigated two procedures to com-
bine the best assembly information obtained with different k-mer
lengths into a final assembly. The first method consists in assem-
bling the set of reads using a high k-value so that highly expressed
genes are best assembled. The reads used in this initial assembly
are then discarded, and a new assembly is performed with the
remaining reads and using a lower k-value so that genes with lower
expression levels are well assembled. These steps can be repeated
one or more times using decreasing k-values. The contigs of the
different assemblies are then pooled to form the final assembly. We
called this approach the “subtractive Multiple-k” method. In the
second method, the reads used in the assembly with a high k-value
are not discarded before running the subsequent assembly with
a lower k; each assembly uses the total set of reads. Some contigs
will appear in two or more assemblies introducing redundancy.
We used CD-HIT-EST (Li and Godzik 2006) to remove redundancy
and retain the longest possible contigs; the full set of contigs is
mapped against itself. The short-redundant contigs are removed,
and the remaining contigs of the pool of assemblies compose the
final assembly. We called this procedure the “additive Multiple-k”
method.

Scaffolding using translation mapping (STM)

The bioinformatics pipeline for building scaffolds based on contig
and read translations is diagrammed in Figure 1. Subsequent to a
de novo transcriptome assembly, contigs and unassembled (orphan)
reads longer than a given threshold are simultaneously translated
and “blasted” against a reference proteome using BLASTX. The
threshold size should be long enough to potentially result in suf-
ficiently good BLASTX E-values (we used a threshold size of 71 bp,
giving translations of 23 amino acids). BLASTX results are parsed to
retain only good quality hits; the criteria we used are contig cov-
erage >90%, identity >60%, and E-value =10~>. The contigs with
no good BLASTX hit, or orphan contigs, are directly placed into the
final assembly data set. If reads (longer than the threshold size)
were included in the procedure, those that showed low-quality
BLASTX hits are discarded.

The BLASTX results are parsed to retrieve the coding strand
and mapping position of the contigs/reads on the reference pro-
tein. If only one contig/read maps on a given reference protein, it

cannot be further assembled and is directly included in the final
assembly (for contigs) or discarded (for reads). When multiple
contigs/reads map on a same reference protein, their relative po-
sition is set according to their place along the sequence reference
in nucleotide coordinates (termed “reference scale” in Fig. 1). The
contigs/reads are then joined to form a scaffold, with N’s filling
the spaces between them. This way of proceeding ensures that
the reading frame is maintained. Several contigs/reads belonging
to the same scaffold may overlap, and sequence differences may
exist in the overlapping regions. The overlapping contigs/reads,
called overlap groups, are therefore checked for the presence of
minor or major sequence differences at each position by comput-
ing a majority rule consensus sequence (here the majority rule
parameter was set to 75%). Minor differences, which may repre-
sent allelic variations or sequencing errors, will be resolved in the
consensus, and the scaffold is built by joining the various overlap
groups. Ambiguous bases (N) will appear in the consensus when
major sequence discrepancies exist at a given position. If ambig-
uous positions cover <1% of the consensus sequence length of the
overlap group, they are still considered as allelic variations or se-
quencing errors. Else, when >1% of the consensus sequence length
is composed by N, which may result from the misassembly of
splice variants, or of transcripts displaying sequence affinities, or
due to indels in the reference sequence relative to the transcript
being assembled, then the overlap group is examined for discern-
ing among the various cases. The assembler CAP (Huang 1992) is
used to reassemble the sequences composing the overlap group,
without using the positioning on the reference sequence. This
realignment resolves instances where indels were the cause of the
problem; the scaffold is thus assembled and included in the final
assembly data set. If the problem persists, then the sequences
composing the overlap group are separated and placed in the final
assembly.

Validation of Multiple-k and STM methods

To investigate and test the performances of our two methods, we
analyzed two independent data sets, one based on real data and
one based on simulated data. To test the Multiple-k assembly
method, we used the Ae. aegypti next-generation short-reads (36
bp) data set recently published by Gibbons et al. (2009), generated
from the same strain as the one used to sequence the complete
genome (Nene et al. 2007). This data set was subjected to de novo
assembly using Velvet v0.7.59 (Zerbino and Birney 2008) and with
k-mer lengths of 19 to 29. Unless otherwise specified, the assembly
statistics were taken from the Velvet output file. We then applied
the two versions of the Multiple-k method to this data set and
evaluated their efficiency. As the Multiple-k method is not aimed at
assembling reads into contigs but rather uses the contigs con-
structed by a de novo assembler under different k-mer lengths, we
did not evaluate the misassembly rate, which depends on the as-
sembler used. We rather determined the improvements by looking
at the assembly statistics and the number of reference transcripts
recovered as compared to the single-k Velvet assembly (obtained
with the optimal k-value). The number of reference transcripts
recovered was calculated by comparing the resulting contigs of the
de novo assembly to the Ae. aegypti reference transcriptome (Nene
et al. 2007) using BLASTN. We considered as being correctly
identified the hits covering at least 95% of the query sequence and
having at least 99% identity with the reference transcript. We es-
timated the number of bases of the reference transcriptome cov-
ered by our assembly by summing the lengths of these good hits.

To investigate the behavior of the Multiple-k method, we
conducted the same analyses on a simulated RNA-seq data set.
First, we simulated a transcriptome from the Ensembl set of D. rerio
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cDNA (32,337 transcripts including splice variants). Different
relative abundances were randomly assigned to each of these
transcripts to mimic the variation in gene expression level ob-
served in a real data set (the abundance profile was set according
to the distribution of D. rerio ESTs density found in the Unigene
database). This simulated transcriptome contained a total of
317,272 transcripts for a total length of 514,277,767 bp. An RNA-
seq experiment was then simulated from this transcriptome. We
generated 10 million 35-bp reads in a shotgun process using the
simreads program of the Rmap package (Smith et al. 2009) and
applied an error rate of 1% to mimic sequencing errors.

Similarly, to test the accuracy of the STM method in highly
controlled conditions, we simulated a simplified next-generation
sequencing experiment of the zebrafish coding transcriptome
(32,337 coding transcripts, representing 51,837,753 bp) by gen-
erating 4 million random single-end reads of 76 bp in size (repre-
senting an ~6X coverage of the transcriptome with homogeneous
gene expression level). The simulation was performed with sim-
reads of the Rmap package (Smith et al. 2009). This data set was
first subjected to a Velvet de novo assembly with an arbitrary k-mer
length of 41. It was then used to determine the scaffolding
misassembly rate of the STM method. We first calculated the error
rate due to the de novo assembler, and then due to the STM method,
by comparing the contigs assembled to the reference transcriptome
of D. rerio (the same from which the reads were simulated), using
the same procedure as described for the Multiple-k method.

The scripts implementing the Multiple-k and STM methods are
available in the Supplemental Material and can also be downloaded
from http://www.surget-groba.ch/downloads/stm.tar.gz.

Quantification of transcripts from the RNA-seq experiments

To quantify the abundance of transcripts assembled in both Ae.
aegyptii and L. gr. cataphracta, we mapped the reads from the RNA-
seq experiments onto the assembled contigs using Maq v0.7.1 (Li
et al. 2008). Reads mapping with a quality below 20 were dis-
carded, and the number of reads mapping on a given transcript
were corrected by the transcript size and the total number of reads
to obtain the number of “reads per kilobase per million” (rpkm).

lllumina sequencing and de novo assembly
of Loricaria transcriptome

To test our methods in real conditions, we conducted a complete
experiment of next-generation transcriptome sequencing and de
novo assembly using our methods for a non-model organism, the
catfish L. gr. cataphracta.

Total RNA was extracted from fresh L. gr. cataphracta full
embryos of 2-8 d post-fecundation (stages ranging from end of
gastrula to hatching) using TRIzol reagent (GIBCO). After quanti-
fication and quality verification of the total RNA, mRNA was iso-
lated using the mRNA Isolation Kit (Roche Diagnostics) according
to the manufacturer’s instructions. We used the “mRNA-SEQ”
Transcriptome Shotgun procedure and Kit (Roche) for preparing
the cDNA for Illumina sequencing. The sequencing experiment
was performed by the company Fasteris SA. First, 1 ug of embryo
mRNA was zinc-fragmented to reach sizes ranging from 200 to 500
bases. First-strand cDNA was synthesized using random hexamer
primers. Second-strand synthesis was performed by treatment with
RNase H and DNA polymerase I for strand elongation, according
to the manufacturer’s instructions. Double-strand cDNA ends were
repaired using T4 DNA polymerase, Large (Klenow) fragment of
DNA polymerase I, and T4 polynucleotide kinase in the presence of
ATP and the four dNTPs. After purification, adenine nucleotides
were added at the 3’ side of the blunt-ended DNA fragments with

Klenow fragment (exo ) and then purified. Forked Illumina
adapters were ligated to the cDNA overnight at 15°C, using T4
DNA ligase in the presence of ATP, and then purified. The cDNA-
adapter complexes were loaded onto a well-resolved 3% agarose
TBE gel, and complexes of 250-350 bp in size were extracted by
excising the corresponding region of the gel and purifying the
complexes with the High Pure PCR Product Purification Kit
(Roche). Finally, the cDNA-adapter complexes were PCR-amplified
for 15 cycles. The prepared cDNA library was sequenced with 71-bp
single-end reads on one lane of the Illumina Genome Analyzer
II platform and processed using the Illumina Pipeline Software
v1.4.0, according to the manufacturer’s instructions (Illumina).
The reads data set was deposited at the NCBI Sequence Read
Archive (SRA) under accession number SRA010189.

The 9.56 million reads of 71 bp that were generated were
subjected to a series of de novo assemblies using k-mer lengths
ranging from 37 to 61. The summary statistics were used to de-
termine the optimal k-mer length (Supplemental Table S4). This
data set was then subjected sequentially to the additive Multiple-k
and then either to the STM ™ or the STM* method.

In this experiment, we estimated the number of differ-
ent genes recovered by comparing the resulting contigs to the
proteome of D. rerio, using BLASTX, and kept only hits with an
E-value =107'°, We then counted the number of distinct genes
(unigenes) identified.

Public transcriptomes and proteomes

Full public transcriptomes or proteomes used for this study were
retrieved from the following databases: Aedes aegypti transcriptome
(http://www.vectorbase.org); Gasterosteus aculeatus proteome (http://
www.ensembl.org/Gasterosteus_aculeatus); and Danio rerio tran-
scriptome and proteome (http://www.ensembl.org/Danio_rerio).
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